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Abstract-A transient analysis of a propagating finite crack of opening mode is considered. A two­
dimensional singular integral equation is formulated for the rotation of the crack surface by the method of
integral transform. The dynamic stress intensity factor is determined by use of the value of the strength of
the square root singularity in the rotation at the crack tip after solving the integral equation numerically.
The motion of the crack tips and the load on the crack face are not prescribed in the formulation of the
problem. Therefore, the method of solution is applicable to nonuniform rates of propagation of a crack
under an arbitrary time dependent load on the crack face. As example problems, the diffraction of a
uniform dilatational wave by (I) a stationary crack, (2) a propagating crack with constant speed and (3) a
suddenly stopping crack after propagating with constant speed is considered. The dynamic stress intensity
is computed for a wide range of time in each problem.

I. INTRODUCTION
In plane problems dealing with the dynamic propagation of a crack it is usually assumed that
the width of the crack is semi-infinite in order to make the problems tractable. In reality,
however, a crack is of finite width. Investigation of the dynamic interaction of the two tips of a
finite crack is therefore very important but conventional methods of analysis, for example the
Wiener-Hopf technique, are not easily applicable to finite crack problems due to mathematical
complexities of the analysis. As a result of lack of adequate tools very little work has been done
on dynamic finite crack problems. In this paper, a method will be described to obtain the
transient dynamic stress intensity factor for a finite crack whose tips may propagate nonuni·
formly in time under the action of an arbitrary time dependent normal load on the crack face. It
will be shown in the analysis that the rotation of the crack surface can be determined by solving
a two-dimensional singular integral equation, and that the dynamic stress intensity factor can be
computed by use of the value of the strength of the square root singularity in the rotation at the
crack tip. After describing the general method, the diffraction of a uniform dilatational wave by
(1) a stationary crack, (2) a propagating crack with constant speed and (3) a suddenly stopping
crack after propagating with constant speed will be investigated. Problem (1) has been
previously investigated by other authors, thus a comparison of the results is possible. Mean­
while, problems (2) and (3) are still unsolved. The dynamic stress intensity factor vs time curves
will be presented for a wide range of time in each problem.

The progress of the work on dynamic crack propagation has been extensively reviewed in
recent articles by Achenbach[l) and Freund[2). The literature in this area can be divided into
two categories: steady state problems and transient problems. Steady state problems are, for
instance, Yoffee[3], Craggs[4) and Sih and Loeber [5). Transient problems were, first of all,
considered by Baker[6) and Broberg [7). Baker[6) investigated a semi-infinite crack which
suddenly appears in a uniformly stretched elastic medium and then propagates with constant
speed. Broberg[7) considered a problem in which a crack initiates at a point and propagates
symmetrically with constant speed under constant pressure on the crack face. Attempts to
remove the restriction of constant speed of propagation were made by Kostrov [8] and
Eshelby[9) for longitudinal shear cracks. Variable speed propagation was also considered by
Freund[lO] in which a semi-infinite crack extends under a static load normal to the crack plane.
Transient analyses of semi-infinite cracks in conjunction with a fracture criterion based on the
balance of rate of energy were considered by Achenbach[ll] and Achenbach and Nuismer[l2].
The effect of wave reflection at the tips of a stationary finite crack was investigated by Thau
and Lu[13]. The same problem was also studied by Sih et al.[l4].

SS Vol. IS, No. 9-B 685



686 K.S. KIM

2. STATEMENT OF THE PROBLEM

A plane crack is contained in an unbounded medium as shown in Fig. 1. The body is linearly
elastic, isotropic and homogeneous. The body force is assumed to be negligible. A Cartesian
coordinate system which has been normalized by the actual half crack width is introduced in
such a way that the crack surface is initially defined by -1 < x < 1, y = O±, -00 < Z < 00. The
time used in this paper also has been normalized by the time for the dilatational wave to travel
half crack width. As a result of these normalizations the dilatational wave speed is equal to 1.
The propagation distances of the right and left crack tips are denoted by 0+(/) and 0-(1),
respectively. Thus the positions of the crack tips at time I are given by x =± 1± o±(t), y =O±.
The crack tip velocities Q±(/) are such that Q± = 0 for I < 0 and 0 < Q±(I)< CR for I > 0, where
CR is the Rayleigh wave speed. The equations of equilibrium in terms of displacement
components are

U,xx +K
2U.yy +(1- K

2)V,xy = U.1t

K
2V,xx +V.yy +(1- K

2)U,xy = V,It

(1a)

(1b)

wher,e K is the ratio of the shear wave speed to the dilatational wave speed (K < 0, and U and v
are the x- and y-components of displacement, respectively. A subscript comma indicates partial
differentiation with respect to the corresponding variables. The stress components normalized
by the shear modulus of the material are given by

U xx =~ U,x +(~- 2) V,y,

Uxy = V,x + U,y'

The boundary conditions on the crack surface are

Uyy(x, O~, I): u(x, I)}, -1 _ 0-(1) < x < 1+ 0+(/).
UXy(x, 0_, I) - 0

Due to the symmetry with respect to y = 0 we have

y

Fig. I. Model of the problem.

(2a)

(2b)

(2c)

(3a)
(3b)
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v(x,O, t) = °} 1 ( ) 1 ( )X > +a+ t or x < - - a_ t .
UXy(x, 0, t) = ° '

The initial conditions are

u(x, y,O) = 0,

v(x, y, 0) = 0,

u,,(x, y,O) = 0,

v.,(x, y, 0) = 0,

for all x and y.
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(3c)
(3d)

(4a)

(4b)

(4c)

(4d)

3. FORMULATION OF AN INTEGRAL EQUATION

Since the problem is symmetric with respect to y = 0, we will hereafter consider only the
upper half space. We will use y =°instead of y = 0+ for the y-coordinate of the crack face.
Integral transforms are employed to reduce the partial differential equations, (1a) and (1b), to
ordinary differential equations. First, time t is eliminated by application of the Laplace
transform

!(x, y, p) = L'" !(x, y, t) e-P
' dt. (5)

The initial conditions are used in this transform. Secondly. Fourier trigonometric transforms are
used to suppress y. They are defined by

!(x, S, p) = L'" !(x, y, p) cos (sy) dy,

!(x, s, p) = i'" !<x, y, p) sin (sy) dy.

(00)

(6b)

A Fourier cosine transform is applied to the Laplace transform of eqn (ta), whereas a Fourier
sine transform is applied to the Laplace transform of eqn (1b). The resulting equations are

where

O,xx - K2'Ylo +(t- K2)sfi,x = (1- 2K 2) v,X<X, 0, p)

fi,xx - K-2'Y1
2fi +(1- K-2)Sa.x = -SK-2V(X, 0, p)

'YI = (S2 + p2)1/2

'Y2 = (S2+ K-2p 2)1/2.

(7a)

(7b)

(Sa)

(Sb)

Boundary conditions (3b) and (3d) together with eqn (2c) have been used to obtain the
right-hand sides of eqns (7a) and (7b) in terms of v(x, 0, p) and v.x(x, 0, p).

The general solutions of eqns (7a) and (7b) are given by

(9a)
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s [ 2 2 ]1X

+- I-~ V(17,O,P) sinh [1.(7,- x)] d17
11 12 - S 0

(9b)

The coefficients A to A2, A3 and A4 are determined from the conditions

a(x, s, p) =: 0, at x =: ±oo,

6(x, s, p) =: 0, at x = ±oo.

We get

A2(s,p) =:![I-~]JO V(17,O,P) e'l'I'I d17,
12 - S -00

(lOa)

(lOb)

(lla)

(lIb)

(lIe)

(lId)

Stress components in the transform space, au, ayy and JXY' can be obtained by transforming
eqns (2a), (2b) and (2c) accordingly and substituting aand 6. In this study, however, we will only
consider J", since our main interest is in the determination of the dynamic stress intensity factor.
Jyy is given by

~ (I 2)~ s: 1_(0)
U yy =: -;? - ".x +-;? v - -;? v x, ,p.

Substituting aand 6 into eqn (l2) and integrating by parts, we obtain

(12)

The inverse Fourier cosine transform which is defined by

2100

•[(x, y, p) =: - [(;K, s, p) cos (sy) ds
11' 0

(l4)

is performed 'On eqn (13) for y =: 0. Then we take the inverse Laplace transform by application
of the Cagniard-De Hoop method, that is, the expression for Uyy obtained above is changed into
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a recognizable Laplace transform by setting 'Yil1/ - xl =pt, i =I, 2, in each double integral.
Then, using the identity

[:t !*g(t)] = pfg,

where * implies the convolution integral, we obtain

(15)

CTyy(X, 0, t) =:t [J:f v,,,(1/,O, 1')H(t - l' -11/ - xl)M\(t - 1',1/ - x) d1' d1/

+L:f v,,,(1/,O, 1')H (t -1' _!1/: XI) M~t - 1',1/ - x) d1' d1/

-~Ix V.,,(11, O, t)d1/], (16)
/( -00

where

(17)

and H(t) is the Heaviside function. Equation (16) is rearranged in such a way that the terms
with the Cauchy kernel (1/ - xr' are extracted out and the terms with the kernel (1/ - xr3 in M\
and Mz are combined together so that the strong singularities across 11 =x are canceJJed,
Noticing that V,,,(11, 0,1') is equal to the rotation of tbe crack surface, aJ(71, 0,1'), because of eqns
(3b), we obtain the following equation:

where

where

4 iJ
CTyy(X, O, t) = ; iJt J(x, t),

z II (t-1'iJ(x, t) =-/( W(1/, 0,1') (71- X)3 d1' d1J
AI-A2

+ (l-~ICZ)IL,W(11,O, 1') (71 ~ x) d1' d71

-!IL
2
W(1/,O,1')(1/:X)d1' d11

Ii K~-~71-~
+ AI W(11,O,1')(t_1')2_(1/_x)~1/2d1'd11

+IL
2
w(11,0, 1')Kz(t - 1', 11 - x) d1' d1/

- ~1r IX W(1/, 0, t) d71,
/( -\-a_(t)

(18)

(19)
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and AI and A2 are the domains of dependence defined by

AI ={(11, 1')1

A2 = {( 71, 1')1

0< l' < t -171 - xl,

0< l' < t -'71 - xl,
K

-1- o-(r) < 71 < 1+O+(T)},

-1 - 0_( 1') < 71 < 1+a+(1')J.

The 71-integration in the second and third terms in eqn (19) which include the Cauchy kernels is
performed in the sense of the Cauchy principal value, if they do not exist in the sense of
Riemann. Recalling that uy,(x, 0, t) is given as a boundary condition on the crack face, eqn (18)
can be viewed as a differential-integral equation for the unknown function 1iJ(71, 0, r). Evaluation
of 1iJ(11, 0, r) can only be carried out numerically since the equation is not tractable. To facilitate
the application of our numerical technique we now change eqn (18) into the form of an integral
equation by integrating with respect to time. Noticing that

lie 4
Uyy(x, 0,1') dT = - J(x, tc )

o 1T
(21)

for Ixl > J, where tc is the time when the propagating crack tip arrives at x, that is, x = 1+ a+(tc)
if x > I, x = - J - a-(te) if x < - I, we obtain

4 I'- [J(x, t) - H(lxl- J)J(x, te)] = Uyy(x, 0, r) dT.
1T Ie

(22)

In eqn (22) we assume that tc = 0 if Ixl < 1.
To evaluate 1iJ(71,O, 1') in eqn (22), it will be expedient to have some information on the

behavior of IiJ a priori and set the function into the form in which the singularities of IiJ appear
explicitly. Two types of singularities are expected in view of some previous analyses in the
literature. The first type is the square root singularity which arises at the crack tip. The proof of
this fact can be found in Achenbach and Bazant[l5] and Freund and Clifton[16]. The second
type of singularity is the travelling logarithmic singularity which is located at the front of the
Rayleigh wave. We can find this singularity in Baker[6] and Thau and Luf14] by differentiating
normal displacement of the crack face with respect to the coordinate of crack propagation
direction. Representation of this type of singularity, however, makes the expression too
cumbersome. Also, for a finite crack no information is available to date on the behavior of the
travelling singularities after rediffraction of the cylindrical waves at the crack tips. For these
reasons we neglect the travening singularities in the structure of 1iJ, and write IiJ simply as

(23)

where a is assumed to be bounded and continuous almost everywhere over the area A defined
by A ={(71, l')Ir ~ 0, - J- a_(T) < 71 < I +a+(T)}. a is zero if (11, T) is not in A. Therefore, there
is a jump discontinuity in a across the crack tip trajectories. In order to derive a formula for
the stress intensity factor, we will further assume that a is analytic in A almost everywhere
along the crack tip trajectories. Furthermore, in the numerical computation process of the
integral equation we will treat a as if it is bounded and continuous everywhere in A. Deviation
of the numerical results from some existing data by this treatment is thought to be insignificant
as will be shown in example problems.

4. STRESS INTENSITY FACTOR

The dynamic stress intensity factor, K1D(t), is defined by

Kfv(t) =}!m. v'(21TE)Uyy [± 1± a±(t) ± E, tl, (24)
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where the upper and lower signs are for the right and left crack tips, respectively. We now
consider the evaluation of KiD for uniform extension of a crack. The formula obtained for this
case will be extended to nonuniform propagation of the crack without detailed proof. For
uniform extension, eqn (23) is written as

Let us first consider KiD' Substituting eqn (18) into eqn (24), KiD becomes

KiD(t) =i lim y(21T(X - 1- ct» aatJ(x, t).1T x~l+cI)+

(25)

(26)

In order to evaluate the right hand side of eqn (26), let us take a particular point (x, t) in the
T/ - T plane such that x> 1+ct [see Figs. 2(a) and 2(b)] and construct At and A2• Then
introduce (N, T) and (r, 8) coordinate systems as illustrated. Then divide At into An and At2,
where An is the area generated by drawing a circle with its center at (x, t) and radius rt. An
includes the point (T/t. Tt) which is the intersection of t - T = X - T/ and T/ = 1+ CT. Similarly, we
divide A2 into A2t and An as shown in Fig. 2(b). Let us denote the contribution of ith term in
J(x, t) to KiD by 1;. For i =I, using eqn (25), we have

Jt =_i K
2 lim Y(21T(X-I-ct».!-[If +If -If -If]1T x~l+cl)+ at All AIZ AZI Azz

0(:", T) (t - d d d
y«1 +cd - T/2) (T/ - X)3 T T/.

T

(27)

~A"

[JA,.

T

IS3 A 21

o A 22

N --j-r----'t-fI

(b)

Fig. 2. Division of the area of integration for evaluation of KiD.
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Denoting the contribution of each integral in the bracket of this equation to J, by h, where
j =I, 2, 3, 4, then we find J'2 =JI4 = 0 by direct differentiation of the integrals and passage to
the limit. Using the polar coordinate system and expanding 0 into a Taylor series about (1/t. Tt),
J lt can be written as

J 4 2 1· _1(2 ( 1 t» a [ O(1/t. T,) f8i sin
2

8 d8II=-K 1m v 1TX- -c - 3
1T x->(l+cl)+ at y(l + CTt + 1/ I) ,,/4 cos 8

f
~ d ]r +<1> t

'0 y(l + c(t - r sin 8) - (x - r cos 8» (x,)
(28)

where rr/..x - I - ct)/(cos 8 - c sin 8) is the distance from (x, t) to 1/ = I + CT along any fixed 8,
8T is the angle at the intersection of ,= " and 1/ = I + CT, and <I>(x, t) is such that y(x - I ­
Ct)<I>.1 -+ 0 as x -+ (l +ct)+. After performing ,-integration and introducing a new variable t
defined by ~ = x - ,,(cos 8 - C sin 8), we obtain

where ~f = x - ,,(cos 8T - C sin 8T) = 1+ ct and ~o = x - 'I(COS 1T14 - C sin 1T14). Then, referring
to Mushkelishvili[l7] and observing that limx->(l+cIl+ tan 8f = Ilc, we finally obtain

(30)

Similarly, we can show J13 = -JII , and so J, = O. The evaluation of J2, h J4 and J5 are
accomplished in an analogous manner. Consequently, only the results are presented here:

J = -4- I( )(1 _! 2) O(l +ct, t)
2 V 1T 2

K yO +ct) ,

J = 2- I( ) O(l +ct, t)
3 v 1T yO +ct) ,

c2 {I I K2(3 +c
2) } O(l +ct, t)

J4 = -4y(1T) y(l- c~ 1+ y(l- c2) 4,? - 4[1 + (l + c2/2)y(l- c2)] y(l + ct) ,

J5 = 2Y(1T) (;Y [I +~(1- (~2))r2
~~;:~t~).

(31)

(32)

(33)

(34)

The last term, J6, vanishes since v(-I- ct, t) = 0 and v(x, t) = o. Adding all of the I;'s, the
dynamic stress intensity factor becomes

where

+ 00 + ct, t)
KiIJ.t) = f(K, c) y(l +ct) , (35)

In a similar manner, we obtain

(36)

for the left crack tip.

K--'t) = -f( )0(-1- ct, t)
IV\. K, C y(l + ct) (37)
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(38)

Recalling that KiD was determined by considering a neighborhood of the point (1 +ct, t) in
the 71-'1' plane, we can extend the applicability of eqns (35) and (37) to nonuniform rates of
propagation with some modification. We obtain the following equation:

K ± ( - +f[ . ( )] 0[±1 ± o±(t), t]
ID\t) - - K, a:l: t V([2 +a_(t) +a.(t)]/2)"

To determine K1D(t) we first obtain [±1± a±(I), t] by solving the integral eqn (22) numerically.
Then. we compute KYD(t) by utilizing the above equation.

5. EXAMPLE PROBLEMS

As numerical examples. we will investigate the diffraction of a uniform dilatational wave
with propagation vector normal to the crack plane by (1) a stationary crack, (2) a crack
propagating symmetrically with constant speed. and (3) a suddenly stopping crack after
propagating symmetrically with constant speed. The total wave field for a diffraction problem is
determined by adding the incident wave field and the scattered wave field. For the purpose of
determining the stress intensity factor we only need to consider the scattered wave field. The
boundary condition (3a) for the scattered wave field is given by

for Ixl < 1+o(t), (39)

where Uo is the uniform pressure on the crack face, and a(t) =a_(t) =o+(t). a(t) is defined by

j
O,

et,
a(l)=

. ct.

etA,

problem (I),

problem (2),

problem (3),
(40)

where tA is the time when the crack stops suddenly. The numerical scheme for computation of
the integral eqn (22) is outlined in the following: Introduce a new variable 71* defined by
71* = 71/[1 +a(".)], and map AI and Az onto At and A!, respectively (see Fig. 3). Then, divide
AT and A! into a set of horizontal strips. Neglecting the logarithmic singularities as mentioned
earlier. we approximate 0* in each strip by

ZN-I

0*(11*,"')"" ~ [l4:J +bkj('1'-'1'k)]1J(l1*), 'l'k~"'~'1'k+"
J~I,3.... .

1"

t (xn,ll

~ A;(xn,tl

I::':':~::J A;(Xn!tl ~~~"I

(41)

-I o

Fig. 3. Division of the area of integration for numerical integration.
kl+ N).,,- - x.1 = t - 'T, 'T;i tA

(l) 10 +ctA)"- - x..I= t - 'T, 'T> tA
\0 +C'T)"'- - x.1 :0 K(t - T). 'T:iii tA

(2) 10 +ctA)"- - x.I:o K(t - 'T), 'T> tA.
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(42)

where 0*(71*, T) = 0(71, T), akj and bkj are constants and 1j is the jth order Chebyshev
polynomial of the first kind. Note that only odd order polynomials are included in eqn (41). This
is due to the anti-symmetry of the rotation with respect to y-axis for the problems under
consideration. Taking Tt =0, then a\j =°from the initial conditions. Also, from the continuity
of 0* at T =Tko we have akj =a'j +blj(Tk - TI), where / =k - I. The problem is now reduced to
determine bk/s in each strip. In order to compute bjj(T( < T < Tj+( = t), pick N values of x which are
zeros of T2N- t{x/[1 + a(t))} in [0, 1+ a(t)], namely

(
2n -I ",)

Xn = [l +a(t)J cos 2N -1"2 .

where n = 1,2, ... ,N. Then, substituting eqn (41) into eqn (22), we obtain the following N x N
linear system of equations:

(43)

where n = I, 2, ... , N,

where f,k(T) = I, hk(T) = T - Tko ATk and A!k are the areas of the kth strip associated with AT
and A!, respectively, andke is the number of the strip in which Tkc < te ~ TI<,,+I'

The area integrals Pj,k are computed approximately by application of the quadrature
formulas of Gauss type except the 71*-integrals in the second and third terms which are
computed analytically by use of the recurrence formula 1jdx) = 2x1j(x) + 1j-t(x). The detail of
the integration procedure is described in [18]. Typical examples of the numerical results for 0*
are presented in Figs. 4 and 5 for Uo =4/",. The results were satisfactory for stationary and
suddenly stopping cracks, however severe oscillation, as seen in the figures, was produced for
the propagating crack as crack speed increased. The oscillation was somewhat dependent upon
the order of polynomial and the size of time increment but no drastic improvement was found.
It is felt that a more refined numerical scheme would be necessary to remove the oscillation. In
the interpretation of the data it was assumed that the true behavior of 0* is represented by the
central curves which passes through the middle of oscillation. These curves are indicated by
dotted lines in the figures. Before proceeding with the discussion of the results for KID, let us
define the normalized dynamic stress intensity factor, K'D(t), by dividing KID(t) by the
quasi-static stress intensity factor, uoy(",[l +a(t)]). For Uo = 4/"" K'D in terms of 0* becomes

K'D(t) =*f(l<, a)O*(l, t)/£.1 +a(t)].

The K'D vs time curves are presented in Figs. 6-9.
The notation for specific times which appear in the figures is defined in the following:

(45)
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tp(ts, tR) =the time for the first scattered dilatational (shear, Rayleigh) wave to traverse the
crack width.

tpp =tp +the time for the first rescattered dilatational wave (PP wave) to traverse the
crack width.

0 0.7 0.8 0.9 1.0

-0.2

-0.4

-0.6

-0.8

': -1.0,
,E
Cl -1.2

-1.4

-1.6

-1.8

-2.0

Fig. 4. The profile of U*(,,*, T) (small times). K== 0.542.0; 2N -I == 5, ~T == 0.2, ~1J* == 0.2, c == 0, T == 1.0.
8; 2N - I == 9, ~T == 0.2,~1J* == 0.2, C == 0, T == 1.0. 0; 2N - 1== II, ~T == 0.2, ~1J* '" 0.2, c == OAK, T == 2.0. e;
2N - 1== 9, ~T == 0.4, ~1J* == 0.2, c == 0.4K, T == 2.0. b,; 2N - I == 15, ~T == 0.2, ~1J* == 0.2, c == 0.8K, T == 4.0.•;

2N - I == 9, ~T == 0.4, ~1J* == 0.2, C == 0.8K, T == 4.0. --; Approximate curves.
1J'

o 0.\ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.4

-0.8

-1.2

-1.6

-2.0

-2.4

-;

'""
-2.8

~
-3.2

-3.6

-4.0

-4.4

-4.8

-5.2

Fig. 5. The profile of U*(,,*, T) (large times). K== 0.542. 0; 2N - 1== 5, ~T == 0.2, 0.5, ~,,* == 0.2, c == 0,
T == 14.7. 0; 2N -1 == 9, ~T == 0.4, ~,,* == 0.2, tA == 1.2, C == 0.8K, T == 10.0. e; 2N -1 == 9, ~T == 0.4, ~,,* == 0.2,

C == OAK, T == 14.8. b,; 2N - 1== 9, ~T == 0.4, ~,,* == 0.2, C == 0.8K, T == 14.8. --; Approximate curves.
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IRA = IA+ the time for the Rayleigh wave generated at 1= IA to traverse the crack width.

For the time interval 0 < I < Ip where no wave interaction occurs the results for the stationary
and propagating cracks must agree with the results for a semi-infinite crack in Baker[6]. K'D
obtained from Baker's equation for U yy can be expressed as

K'D(t) = k(K, c) ~ (1: c,). (46)

o

, , , ! , , , ! ! ,

0.8

0.7

.~
0.6

0.5

0.4

0.3

0.2

0.1

0

1.1

2 3 4 5 6 7 e 9 10 II 12 13 14 15
Time

Fig. 6. The normalized dynamic stress intensity factor of a stationary crack K = 0.577
(II =0.25). --; Thau and Lu[I3J. -; This study. 0; 2N -I = 5,111' =0.2, 05,111}- =0.2. e; 2N -I =9,

111' = OJ, 111}- = 0.2.
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Fig. 7. The normalized dynamic stress intensity factor of a stationary crack K = 0.542
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Fig. 8. The normalized dynamic stress intensity factor of a propagating crack with constant speed.
K = 0.542 (II = 0.29). e; Baker[6).•; Broberg[7). -; This study. t:.; 2N -I = 9, ~T = 0.4-0.8, ~7). = 0.2.
A; 2N -I = 5, ~T = 0.4, ~7). = 0.2.0; 2N - I = 9; ~T = 0.4, ~". = 0.2.0; 2N - I = II, ~T = 0.4, ~7). = 0.2.

0; 2N - I = 9, ~T = 0.4, ~". = 0.2.

where the values of k(l<, c) for I< = 0.542 are obtained as follows:

cll< k(l<, c)
0.0 0.580
0.2 0.503
0.4 0.414
0.6 0.306
0.8 0.157

The results for the three example problems are discussed in the following:

(1) Stationary crack
The numerical results for I< = 0.577 are shown in Fig. 6 in comparison with Thau and Lu[13].

The time scale of their data is modified in Fig. 6 in such a way that the normalization is on the
same basis as in this investigation. It is shown in [13] that if I< is such that tR < tpp, K10 attains
its maximum value (:: 1.3) at t = tR and dK1Jdt approaches +00 as t -+ tR - and it is finite as
t -+ tR +. As one may observe, the two results agree quite well over the time period 0 < t < tpp.
The sharp peak at t = tR is smoothed out in the present result due to the omission of the
propagating logarithmic singularity in the computation process. The large time behavior of K10
is an agreement with the results in Sih et al.[14] as illustrated in Fig. 7.

(2) Propagation with constant speed
The K1o(t) curves for I< = 0.542 and a number of crack speeds are presented in Fig. 8. The

results for t < tp agree well with Baker's results mentioned above. The large time solutions are
compared with Broberg[7] in which a crack propagates symmetrically with constant speed from
zero initial length under constant pressure on the crack face. K'o obtained from his equation
for U yy is given by
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Fig. 9. The normalized dynamic stress intensity factor of a suddenly stopping crack after propagating with
speed c = O.4K. K= 0.542. e; 2N - 1= 0, 41" = 0.1, 41/* = 0.2. 6; 2N - 1= 9. 41" = 0.4, 41/* = 0.2; 0;

2N -I = 9.41"= 0.4,41/* =0.2.0; 2N -1 = 9.41"=0.4.41/* =0.2.

(47)

where g(c) is defined by eqn (25) in [7]. For K:::; 0.542, the following numerical values are
obtained:

c/K K'D
0.0 1.0
0.2 0.905
0.4 0.723
0.6 0.505
0.8 0.243

It is observed in Fig. 8 that the values of K'D at large times approach Broberg's K,Do This
implies that the effects of the initial width of the crack become negligible as crack propagates.
Another interesting phenomenon one can observe in this figure is that the maximum value of
K'D is attained at I"'" IR, and that the overshoot of K'D beyond the large time K'D becomes
insignificant as crack speed increases. .

(3) Suddenly slopping crack
The behavior of K'D for a suddenly stopping crack is studied for K :::; 0.542 and several

values of c and IA' A typical result is presented iii Fig. 9. In any case a jump discontinuity was
found in K'D at I = IA. The size of the jump and the values of K'D(IA +) varied with the values
of c and IA. The peak values of K'D were obtained approximately at I = IRA. For I> IRA, K'D
decreases gradually and reaches 1 oscillating in a manner similar to the case of a stationary
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Fig. 10. The normalized dynamic stress intensity factor immediately after stopping of a Broberg crack vs
crack speed/Rayleigh wave speed. -; Freund(2), P = 0.25. --; This study, P = 0.29.

crack. For sufficiently large values of tA at which Broberg's result is approximately reached
KlD(tA +) is compared with Freund [2] in Fig. 10. It is seen that the dependence of KlD(tA +)
upon CICR is similar for the two cases,
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